Search results for "TRNA modification"

showing 10 items of 11 documents

Structural insights into the GTPase domain of Escherichia coli MnmE protein

2007

The Escherichia coli MnmE protein is a 50-kDa multidomain GTPase involved in tRNA modification. Its homologues in eukaryotes are crucial for mitochondrial respiration and, thus, it is thought that the human protein might be involved in mitochondrial diseases. Unlike Ras, MnmE shows a high intrinsic GTPase activity and requires effective GTP hydrolysis, and not simply GTP binding, to be functionally active. The isolated MnmE G-domain (165 residues) conserves the GTPase activity of the entire protein, suggesting that it contains the catalytic residues for GTP hydrolysis. To explore the GTP hydrolysis mechanism of MnmE, we analyzed the effect of low pH on binding and hydrolysis of GTP, as well…

Models MolecularTRNA modificationMagnetic Resonance SpectroscopyGTP'aluminium fluoridehomology modelingMolecular Sequence DataGTPaseGuanosine triphosphateGuanosine DiphosphateBiochemistryeraGTP Phosphohydrolaseschemistry.chemical_compoundStructural BiologyEscherichia coliAmino Acid SequenceHomology modelingBinding siteGTPaseMolecular BiologyBinding SitesSequence Homology Amino AcidChemistryEscherichia coli ProteinsTrmENMRRecombinant ProteinsKineticsBiochemistryMnmEGuanosine diphosphateRap2AGTP PhosphohydrolasesGuanosine TriphosphateSequence AlignmentRasProteins: Structure, Function, and Bioinformatics
researchProduct

2015

Elongator is a conserved protein complex comprising six different polypeptides that has been ascribed a wide range of functions, but which is now known to be required for modification of uridine residues in the wobble position of a subset of tRNAs in yeast, plants, worms and mammals. In previous work, we showed that Elongator's largest subunit (Elp1; also known as Iki3) was phosphorylated and implicated the yeast casein kinase I Hrr25 in Elongator function. Here we report identification of nine in vivo phosphorylation sites within Elp1 and show that four of these, clustered close to the Elp1 C-terminus and adjacent to a region that binds tRNA, are important for Elongator's tRNA modification…

Cancer ResearchTRNA modificationProtein subunitSaccharomyces cerevisiaeWobble base pairBiologybiology.organism_classificationBiochemistryCasein Kinase ITransfer RNAGeneticsPhosphorylationProtein kinase AMolecular BiologyGenetics (clinical)Ecology Evolution Behavior and SystematicsPLOS Genetics
researchProduct

2'-O-methylation within prokaryotic and eukaryotic tRNA inhibits innate immune activation by endosomal Toll-like receptors but does not affect recogn…

2019

Bacterial RNA has emerged as an important activator of innate immune responses by stimulating Toll-like receptors TLR7 and TLR8 in humans. Guanosine 2′-O-methylation at position 18 (Gm18) in bacterial tRNA was shown to antagonize tRNA-induced TLR7/8 activation, suggesting a potential role of Gm18 as an immune escape mechanism. This modification also occurs in eukaryotic tRNA, yet a physiological immune function remained to be tested. We therefore set out to investigate the immune modulatory role of Gm18 in both prokaryotic and eukaryotic microorganisms, Escherichia coli and Saccharomyces cerevisiae, and in human cells. Using RiboMethSeq analysis we show that mutation of trmH in E. coli, trm…

0303 health sciencesTRNA modificationInnate immune system030302 biochemistry & molecular biologyRNA[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyTLR7BiologyTLR8[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyCell biology03 medical and health sciencesImmune system[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Transfer RNAGene expression[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Molecular BiologyComputingMilieux_MISCELLANEOUS030304 developmental biology
researchProduct

Iron in Translation: From the Beginning to the End

2021

Iron is an essential element for all eukaryotes, since it acts as a cofactor for many enzymes involved in basic cellular functions, including translation. While the mammalian iron-regulatory protein/iron-responsive element (IRP/IRE) system arose as one of the first examples of translational regulation in higher eukaryotes, little is known about the contribution of iron itself to the different stages of eukaryotic translation. In the yeast Saccharomyces cerevisiae, iron deficiency provokes a global impairment of translation at the initiation step, which is mediated by the Gcn2-eIF2α pathway, while the post-transcriptional regulator Cth2 specifically represses the translation of a subgroup of…

Microbiology (medical)TRNA modificationQH301-705.5Saccharomyces cerevisiaetranslationReviewSaccharomyces cerevisiaeyeastMicrobiology<i>Saccharomyces cerevisiae</i>03 medical and health sciencesiron deficiency0302 clinical medicineEukaryotic translationVirologyTranslational regulationProtein biosynthesisBiology (General)030304 developmental biology0303 health sciencesbiologyTranslation (biology)biology.organism_classificationCell biologyABCE1Codon usage biasbiology.proteintRNA modification030217 neurology & neurosurgeryMicroorganisms
researchProduct

2016

Urm1 is a unique dual-function member of the ubiquitin protein family and conserved from yeast to man. It acts both as a protein modifier in ubiquitin-like urmylation and as a sulfur donor for tRNA thiolation, which in concert with the Elongator pathway forms 5-methoxy-carbonyl-methyl-2-thio (mcm5s2) modified wobble uridines (U34) in anticodons. Using Saccharomyces cerevisiae as a model to study a relationship between these two functions, we examined whether cultivation temperature and sulfur supply previously implicated in the tRNA thiolation branch of the URM1 pathway also contribute to proper urmylation. Monitoring Urm1 conjugation, we found urmylation of the peroxiredoxin Ahp1 is suppre…

0301 basic medicineTRNA modificationbiologyProtein familySaccharomyces cerevisiaeCell Biologybiology.organism_classificationBiochemistry Genetics and Molecular Biology (miscellaneous)MicrobiologyApplied Microbiology and Biotechnology03 medical and health sciences030104 developmental biologyUbiquitinBiochemistryVirologyTransfer RNAGeneticsbiology.proteinParasitologySite-directed mutagenesisPeroxiredoxinMolecular BiologyProtein urmylationMicrobial Cell
researchProduct

MODOMICS: a database of RNA modification pathways—2013 update

2012

MODOMICS is a database of RNA modifications that provides comprehensive information concerning the chemical structures of modified ribonucleosides, their biosynthetic pathways, RNA-modifying enzymes and location of modified residues in RNA sequences. In the current database version, accessible at http://modomics.genesilico.pl, we included new features: a census of human and yeast snoRNAs involved in RNA-guided RNA modification, a new section covering the 5′-end capping process, and a catalogue of ‘building blocks’ for chemical synthesis of a large variety of modified nucleosides. The MODOMICS collections of RNA modifications, RNA-modifying enzymes and modified RNAs have been also updated. A…

TRNA modificationSequence analysisBiologycomputer.software_genre03 medical and health sciences0302 clinical medicineRNA Small NuclearEpitranscriptomicsGeneticsHumansRNA Small NucleolarRNA Processing Post-TranscriptionalSmall nucleolar RNA030304 developmental biologyGeneticsInternet0303 health sciencesDatabaseSequence Analysis RNAMRNA modificationRNAArticlesRibosomal RNAEnzymes3. Good healthTransfer RNARNADatabases Nucleic Acidcomputer030217 neurology & neurosurgeryNucleic Acids Research
researchProduct

Dynamic modulation of Dnmt2-dependent tRNA methylation by the micronutrient queuine

2015

Dnmt2 enzymes are cytosine-5 methyltransferases that methylate C38 of several tRNAs. We report here that the activities of two Dnmt2 homologs, Pmt1 from Schizosaccharomyces pombe and DnmA from Dictyostelium discoideum, are strongly stimulated by prior queuosine (Q) modification of the substrate tRNA. In vivo tRNA methylation levels were stimulated by growth of cells in queuine-containing medium; in vitro Pmt1 activity was enhanced on Q-containing RNA; and queuine-stimulated in vivo methylation was abrogated by the absence of the enzyme that inserts queuine into tRNA, eukaryotic tRNA-guanine transglycosylase. Global analysis of tRNA methylation in S. pombe showed a striking selectivity of Pm…

RNA Transfer AspTRNA modificationGuanineMethyltransferaseTRNA methylationbiologyQueuosineQueuineMethylationbiology.organism_classificationMethylationchemistry.chemical_compoundRNA TransferchemistryBiochemistrySchizosaccharomycesTransfer RNAGeneticsRNADictyosteliumDNA (Cytosine-5-)-MethyltransferasesMicronutrientsPentosyltransferasesSchizosaccharomyces pombe ProteinsSchizosaccharomycesNucleic Acids Research
researchProduct

2020

Abstract RNA modifications are a well-recognized way of gene expression regulation at the post-transcriptional level. Despite the importance of this level of regulation, current knowledge on modulation of tRNA modification status in response to stress conditions is far from being complete. While it is widely accepted that tRNA modifications are rather dynamic, such variations are mostly assessed in terms of total tRNA, with only a few instances where changes could be traced to single isoacceptor species. Using Escherichia coli as a model system, we explored stress-induced modulation of 2′-O-methylations in tRNAs by RiboMethSeq. This analysis and orthogonal analytical measurements by LC-MS s…

Regulation of gene expression0303 health sciencesTRNA modification2'-O-methylation030302 biochemistry & molecular biologyMutantSwarming motilityRNAMethylationBiologyCell biology03 medical and health sciencesTransfer RNAGenetics030304 developmental biologyNucleic Acids Research
researchProduct

Mapping and Quantification of tRNA 2′-O-Methylation by RiboMethSeq

2018

Current development of epitranscriptomics field requires efficient experimental protocols for precise mapping and quantification of various modified nucleotides in RNA. Despite important advances in the field during the last 10 years, this task is still extremely laborious and time-consuming, even when high-throughput analytical approaches are employed. Moreover, only a very limited subset of RNA modifications can be detected and only rarely be quantified by these powerful techniques. In the past, we developed and successfully applied alkaline fragmentation-based RiboMethSeq approach for mapping and precise quantification of multiple 2'-O-methylation residues in ribosomal RNA. Here we descr…

chemistry.chemical_classification0303 health sciencesTRNA modificationChemistry2'-O-methylationRNA[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyComputational biologyRibosomal RNADNA sequencing03 medical and health sciences0302 clinical medicine030220 oncology & carcinogenesisEpitranscriptomics[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Transfer RNANucleotideComputingMilieux_MISCELLANEOUS030304 developmental biology
researchProduct

Identification of the 3-amino-3-carboxypropyl (acp) transferase enzyme responsible for acp3U formation at position 47 in Escherichia coli tRNAs

2019

AbstracttRNAs from all domains of life contain modified nucleotides. However, even for the experimentally most thoroughly characterized model organism Escherichia coli not all tRNA modification enzymes are known. In particular, no enzyme has been found yet for introducing the acp3U modification at position 47 in the variable loop of eight E. coli tRNAs. Here we identify the so far functionally uncharacterized YfiP protein as the SAM-dependent 3-amino-3-carboxypropyl transferase catalyzing this modification and thereby extend the list of known tRNA modification enzymes in E. coli. Similar to the Tsr3 enzymes that introduce acp modifications at U or m1Ψ nucleotides in rRNAs this protein conta…

chemistry.chemical_classificationTRNA modificationAlkyl and Aryl TransferasesNucleic Acid EnzymesNucleotidesRNASaccharomyces cerevisiaeBiologymedicine.disease_causePhenotypeEnzymechemistryBiochemistryBacterial ProteinsRNA TransferTransfer RNAGeneticsmedicineEscherichia coliTransferaseNucleic Acid ConformationNucleotideEscherichia coliNucleic Acids Research
researchProduct